Entry tags:
Хана импликации :)
На одном форуме нашел очередной "парадокс" импликации. Самый убойный из всех, что я знаю.
Рассмотрим утверждение:
"Неправда, что если погода пасмурная, то идет дождь"
Это утверждение истинное во всех смыслах: действительно, пасмурная погода не всегда сопровождается дождем. Обычно верно обратное: при дожде практически всегда стоит пасмурная погода (ну кроме редких случаев "слепого дождика").
Переведем это на язык логики с импликацией. "Неправда, что" переводится операцией отрицания. Все утверждение формализуется как ~(A => B), где
A - истинность высказывания "погода пасмурная",
B - истинность высказывания "идет дождь".
Все высказывание в целом истинно, согласно рассуждениям выше.
~(A => B) = true
Левая часть будет истинна при единственной комбинации истинностей переменных: A = true, B = false. Таким образом, мы доказали, что: погода пасмурная всегда и дождь не идет никогда. Очевидно, что это противоречит реальности.
Рассмотрим утверждение:
"Неправда, что если погода пасмурная, то идет дождь"
Это утверждение истинное во всех смыслах: действительно, пасмурная погода не всегда сопровождается дождем. Обычно верно обратное: при дожде практически всегда стоит пасмурная погода (ну кроме редких случаев "слепого дождика").
Переведем это на язык логики с импликацией. "Неправда, что" переводится операцией отрицания. Все утверждение формализуется как ~(A => B), где
A - истинность высказывания "погода пасмурная",
B - истинность высказывания "идет дождь".
Все высказывание в целом истинно, согласно рассуждениям выше.
~(A => B) = true
Левая часть будет истинна при единственной комбинации истинностей переменных: A = true, B = false. Таким образом, мы доказали, что: погода пасмурная всегда и дождь не идет никогда. Очевидно, что это противоречит реальности.
Re: пропущенное
Пока такой вариант:
Если A то B истинно при выполнении следующих условий:
1. Tr(A) = a(x, y, z,...) - то есть, истинность текста A выражается некой функцией-предикатом a от переменных x, y, z,...
2. Tr(B) = b(x, y, z,...) - то есть, истинность текста A выражается некой функцией-предикатом b от переменных x, y, z,...
3. При этом не обязательно, чтобы наборы переменных в a и b были одинаковы, но существенно обозначать одинаковыми переменными одинаковые элементы текстов A и B.
4.
\exist x \exist y \exist z... a(x, y, z,...)
&
\exist x \exist y \exist z... ~b(x, y, z,...)
&
~ \exist x \exist y \exist z... (a & ~b(x, y, z,...))
- то есть, a хотя бы иногда (при некоторых x, y, z,...) равно true, b хотя бы иногда false, но не одновременно. Если все эти условия выполняются, то также можно вывести, что a хотя бы иногда false, b хотя бы иногда true.
Также можно подставлять на место переменных некие конкретные значения из области допустимых, получая высказывания вида "Если A(x0) то B(x0)", и эти высказывания тоже будут считаться истинными (но обязательно прежде должно быть доказано высказывание без подстановки).
И, наконец, похоже, придется запретить рассматривать в функции Tr в качестве текстов A и B выражения вида true, false, x & y - в общем, логические функции. Т.е. надо очень строго разделять истинность текстов и функции истинности, которые выражают эту истинность. Сами по себе функции истинности могут иметь значения, но не могут иметь истинности.
Вот как то так, развернуто оформлю как-нибудь позднее.