Entry tags:
Проект "логика для чайников". Параграф 40
Проблема условных высказываний
Для вычисления результата большинства логических операций надо знать только истинность высказываний, но не надо знать точный текст и детальный смысл. Этот факт следует из правил, по которым происходят вычисления:
(X И Y) истинно, когда истинны оба: и X, и Y.
(X ИЛИ Y) истинно, когда истинно X, или Y, или оба.
(X XOR Y) истинно, когда истинно либо X, либо Y, но не оба.
(НЕ X) истинно, когда X ложно.
Как видите, здесь есть ссылки только на истинность, но нет ссылок на смысл, содержание или конкретный текст, который стоит за этими X и Y.
С помощью символа Tr можно записать эти правила строго. Напоминаю, что функция Tr “извлекает” из текста его истинность.
Tr(X И Y) = Tr(X) И Tr(Y)
Tr(X ИЛИ Y) = Tr(X) ИЛИ Tr(Y)
Tr(X XOR Y) = Tr(X) XOR Tr(Y)
Tr(НЕ X) = НЕ Tr(X)
Таким образом, для этих операций “Tr” можно выносить за скобки (или вносить).
Но одна операция не следует этому общему правилу. Я говорю об операции ЕСЛИ...ТО (символ =>>).
Докажем это методом “от противного” (кому лень, можно пропустить формулы).
Напомню, что метод “от противного” заключается в том, чтобы принять временно за истину нечто подозрительное, и вывести из этого что-то явно ложное. Тем самым доказывается, что исходное предположение ложно. В частности, из предположения можно вывести противоречие (противоречия всегда ложны).
Предположим (“противное”), что для этой операции тоже существует правило вынесения за скобки:
Tr(ЕСЛИ X ТО Y) = ЕСЛИ Tr(X) ТО Yr(Y)
Обозначим эту формулу (1).
Пусть A = “вода мокрая”, B = “трава зеленая”. Оба высказывания истинные, то есть: Tr(A) = true, Tr(B) = true.
Высказывание
ЕСЛИ вода мокрая ТО трава зеленая
– ложно, так как эти два факта между собой не связаны. Трава зеленая, но вовсе не потому, что вода мокрая. То есть:
Tr(ЕСЛИ A ТО B) = false
Обозначим эту формулу (2).
Высказывание
ЕСЛИ вода мокрая ТО вода мокрая
– истинно, так как здесь высказывание обосновывает само себя. То есть:
Tr(ЕСЛИ A ТО B) = true
Обозначим эту формулу (3).
Теперь осталось объединить все формулы.
Применим формулу (1) к формуле (2):
Tr(ЕСЛИ A ТО B) = ЕСЛИ Tr(A) ТО Tr(B) = ЕСЛИ true ТО true = false
Применим формулу (1) к формуле (3):
Tr(ЕСЛИ A ТО A) = ЕСЛИ Tr(A) ТО Tr(A) = ЕСЛИ true ТО true = true
Обратите внимание, что у нас получилось в конце этих формул:
ЕСЛИ true ТО true = false
ЕСЛИ true ТО true = true
То есть, одна и та же формула ЕСЛИ true ТО true одновременно истинна и ложна. Это противоречие. Следовательно, вот это исходное допущение (1) было неверно:
Tr(ЕСЛИ X ТО Y) = ЕСЛИ Tr(X) ТО Yr(Y)
Для операции ЕСЛИ...ТО недопустимо вынесение (внесение) Tr за скобки. Чтобы установить истинность высказывания ЕСЛИ X ТО Y, мало знать истинность операндов – надо знать о них что-то еще.
Это приводит к тому, что стандартная схема абстрагирования становится невозможной. Сложно изучать такую операцию формально. В общем случае для установления истинности условных высказываний приходится применять интуицию, что совершенно недопустимо для современной математики. Математические заключения не должны опираться на такой субъективный фактор, как чья-то интуиция.
Так что же делать? Отказаться от изучения вообще? Что-то в этом роде и происходит. В математике исследование условных высказываний “застряло”. Исследуют другие строго формальные операции, весьма близкие по свойствам – материальную, модальную, строгую, релевантную импликацию. Но настоящие условные высказывания – такие, какими они предстают в живом языке, – пока не поддаются глубокому исследованию.
Тем не менее, условные высказывания применяются даже в математике. Если взять книгу какого-нибудь математика, то мы увидим, что он комментирует свои действия, ведет рассуждения на естественном языке, а в доказательствах теорем сплошь и рядом применяет конструкции “если...то”. Фактически при этом математик опирается на интуицию, а не на формальные правила. Как же математики избегают ошибок, возможных из-за того, что интуиция работает у разных людей по-разному?
Ответ прост: они не позволяют своей интуиции слишком “увлекаться”. Используют небольшое количество количество правил, проверенных временем, и не отступают от них ни на шаг. Что это за правила? В предыдущих главах я их перечислял – modus ponens, modus tollens и некоторые другие. Мы не имеем исчерпывающего знания об условных высказываний, но мы все-так знаем о них кое-что – несколько надежных правил. За их пределы выходить не рекомендуется – логика может подвести.
Для вычисления результата большинства логических операций надо знать только истинность высказываний, но не надо знать точный текст и детальный смысл. Этот факт следует из правил, по которым происходят вычисления:
(X И Y) истинно, когда истинны оба: и X, и Y.
(X ИЛИ Y) истинно, когда истинно X, или Y, или оба.
(X XOR Y) истинно, когда истинно либо X, либо Y, но не оба.
(НЕ X) истинно, когда X ложно.
Как видите, здесь есть ссылки только на истинность, но нет ссылок на смысл, содержание или конкретный текст, который стоит за этими X и Y.
С помощью символа Tr можно записать эти правила строго. Напоминаю, что функция Tr “извлекает” из текста его истинность.
Tr(X И Y) = Tr(X) И Tr(Y)
Tr(X ИЛИ Y) = Tr(X) ИЛИ Tr(Y)
Tr(X XOR Y) = Tr(X) XOR Tr(Y)
Tr(НЕ X) = НЕ Tr(X)
Таким образом, для этих операций “Tr” можно выносить за скобки (или вносить).
Но одна операция не следует этому общему правилу. Я говорю об операции ЕСЛИ...ТО (символ =>>).
Докажем это методом “от противного” (кому лень, можно пропустить формулы).
Напомню, что метод “от противного” заключается в том, чтобы принять временно за истину нечто подозрительное, и вывести из этого что-то явно ложное. Тем самым доказывается, что исходное предположение ложно. В частности, из предположения можно вывести противоречие (противоречия всегда ложны).
Предположим (“противное”), что для этой операции тоже существует правило вынесения за скобки:
Tr(ЕСЛИ X ТО Y) = ЕСЛИ Tr(X) ТО Yr(Y)
Обозначим эту формулу (1).
Пусть A = “вода мокрая”, B = “трава зеленая”. Оба высказывания истинные, то есть: Tr(A) = true, Tr(B) = true.
Высказывание
ЕСЛИ вода мокрая ТО трава зеленая
– ложно, так как эти два факта между собой не связаны. Трава зеленая, но вовсе не потому, что вода мокрая. То есть:
Tr(ЕСЛИ A ТО B) = false
Обозначим эту формулу (2).
Высказывание
ЕСЛИ вода мокрая ТО вода мокрая
– истинно, так как здесь высказывание обосновывает само себя. То есть:
Tr(ЕСЛИ A ТО B) = true
Обозначим эту формулу (3).
Теперь осталось объединить все формулы.
Применим формулу (1) к формуле (2):
Tr(ЕСЛИ A ТО B) = ЕСЛИ Tr(A) ТО Tr(B) = ЕСЛИ true ТО true = false
Применим формулу (1) к формуле (3):
Tr(ЕСЛИ A ТО A) = ЕСЛИ Tr(A) ТО Tr(A) = ЕСЛИ true ТО true = true
Обратите внимание, что у нас получилось в конце этих формул:
ЕСЛИ true ТО true = false
ЕСЛИ true ТО true = true
То есть, одна и та же формула ЕСЛИ true ТО true одновременно истинна и ложна. Это противоречие. Следовательно, вот это исходное допущение (1) было неверно:
Tr(ЕСЛИ X ТО Y) = ЕСЛИ Tr(X) ТО Yr(Y)
Для операции ЕСЛИ...ТО недопустимо вынесение (внесение) Tr за скобки. Чтобы установить истинность высказывания ЕСЛИ X ТО Y, мало знать истинность операндов – надо знать о них что-то еще.
Это приводит к тому, что стандартная схема абстрагирования становится невозможной. Сложно изучать такую операцию формально. В общем случае для установления истинности условных высказываний приходится применять интуицию, что совершенно недопустимо для современной математики. Математические заключения не должны опираться на такой субъективный фактор, как чья-то интуиция.
Так что же делать? Отказаться от изучения вообще? Что-то в этом роде и происходит. В математике исследование условных высказываний “застряло”. Исследуют другие строго формальные операции, весьма близкие по свойствам – материальную, модальную, строгую, релевантную импликацию. Но настоящие условные высказывания – такие, какими они предстают в живом языке, – пока не поддаются глубокому исследованию.
Тем не менее, условные высказывания применяются даже в математике. Если взять книгу какого-нибудь математика, то мы увидим, что он комментирует свои действия, ведет рассуждения на естественном языке, а в доказательствах теорем сплошь и рядом применяет конструкции “если...то”. Фактически при этом математик опирается на интуицию, а не на формальные правила. Как же математики избегают ошибок, возможных из-за того, что интуиция работает у разных людей по-разному?
Ответ прост: они не позволяют своей интуиции слишком “увлекаться”. Используют небольшое количество количество правил, проверенных временем, и не отступают от них ни на шаг. Что это за правила? В предыдущих главах я их перечислял – modus ponens, modus tollens и некоторые другие. Мы не имеем исчерпывающего знания об условных высказываний, но мы все-так знаем о них кое-что – несколько надежных правил. За их пределы выходить не рекомендуется – логика может подвести.
no subject
"
1. Условное “если”.
Если X истинно, то Y тоже непременно истинно, а если X не истинно, тогда для Y ограничений нет.
"
предполагает что "если X то Y" это именно "Y или не X". т.е. никаких дополнительных смыслов, и следовательно никаких несоответствий с математическим вариантом. Т.е. "если вода мокрая, то трава зеленая" = "трава зеленая или вода не мокрая". А все глюки находятся за пределами пункта 1, т.е. в других смыслах "если". Этот вывод подразумевался?
Может тогда эти смыслы отделять? Переформулировать высказывания вроде "Y выводится из X в логике Л" где "логика Л" некоторые правила вывода + аксиомы. Будет в результате меньше путаницы и никаких парадоксов. а "выводится" как раз и есть то самое "объяснение". если мы находим его в заданной логике - высказывание истино, если доказываем что такое не возможно - ложно. пока оно неизвестно - истиность неизвестна.
З.Ы. лирическое отступление: я тут смотрю по коментах Вы критикуете философов за путаницы... Я в принципе согласен. Хочу только сделать замечание что есть люди, которые точно так же отрицают предыдущую философию и занимаются разбором языка аналогичным образом. Их тем не менее называют философами. (в частности позитивисты, тот же Рассел). Как насчет них?
no subject
Это необходимое условие, но не достаточное. Если верно "Y или не X", тогда _может_ быть верно и "если X, то Y". Но может и не быть. Если "Y или не X" ложно, тогда "если X, то Y" точно ложно. Таблица истинности:
X Y если X то Y
0 0 ?
0 1 ?
1 0 0
1 1 ?
А у философов действительно иногда неплохо получается критиковать других философов. Но чего стоит область, которую удобно только критиковать, но нет ничего позитивного? :)
no subject
Про философов: ну дык не зря ж Рассел и прочие позитивистами называются )) По мне так уже хотя-бы отделение науки от прочего весьма позитивно.
no subject
no subject