Entry tags:
Очередной парадокс импликации
Обсуждение очередного парадокса материальной импликации происходит там
Чтобы желающие могли понять суть и поучаствовать в обсуждении без разгребания множества комментов, я здесь кратко (собирался кратко :))) изложу проблему и наиболее острый (как мне кажется) момент.
Пусть у нас есть выключатель света с кнопками 1 и 2. Чтобы включить свет, надо включить оба выключателя. То есть, схема вот такая:
Когда ни одна кнопка не включена, света нет, когда включена только одна, света тоже нет, когда включены обе, свет есть.
Рассматривается утверждение:
V1 = "Если включена кнопка 1 и включена кнопка 2, то свет горит"
(формулировка намеренно в настоящем времени - "включены", "горит", чтобы не заморачиваться на "временнУю" логику).
Высказывание кажется истинным с точки зрения интуиции (здесь и далее я буду ссылаться на "точку зрения интуиции", имея в виду предполагаемую оценку текста большинством носителей русского языка).
Обозначения
A1 = "Включена кнопка 1"
A2 = "Включена кнопка 2"
B = "Свет горит"
Если попытаться формализовать (V1) через материальную импликацию, то получится:
V2 = A1 and A2 => B
Это высказывание истинно с точки зрения булевой алгебры. Если есть сомнения, то для проверки достаточно произвести перебор всех 4 возможных состояний кнопок. Таблица истинности для материальной импликации:
(из описания выключателя можно получить и другую формулу: A1 & A2 <=> B, однако формула (V2) следует из нее, и, продолжая, рассуждения далее, приходим к тому же)
Используя преобразования алгебры логики, из (V2) получается:
V3 = (A1 => B) or (A2 => B)
Выполняем обратное преобразование из материальной импликации в текст:
V4 = (A1 => B) = "Если включена кнопка 1, то свет горит".
Даже если кнопка 1 включена, неизвестно состояние кнопки 2. Если она выключена, то свет не горит. Поэтому высказывание (V4) ложно с точки зрения интуиции.
V5 = (A2 => B) = "Если включена кнопка 2, то свет горит".
Даже если кнопка 2 включена, неизвестно состояние кнопки 1. Если она выключена, то свет не горит. Поэтому высказывание (V5) ложно с точки зрения интуиции.
V3 = V4 or V5
Поскольку (V4) и (V5) ложны с точки зрения интуиции, то высказывание (V3) тоже ложно.
Однако с точки зрения формальной логики V3 имеет ту же истинность, что и V2, то есть, истинно.
Противоречие.
Источник противоречия - попытка формализовать конструкции русского языка "если ... то ..." через материальную импликацию. С английским те же проблемы.
Чтобы желающие могли понять суть и поучаствовать в обсуждении без разгребания множества комментов, я здесь кратко (собирался кратко :))) изложу проблему и наиболее острый (как мне кажется) момент.
Пусть у нас есть выключатель света с кнопками 1 и 2. Чтобы включить свет, надо включить оба выключателя. То есть, схема вот такая:
1 2 +___/___/___-
Когда ни одна кнопка не включена, света нет, когда включена только одна, света тоже нет, когда включены обе, свет есть.
Рассматривается утверждение:
V1 = "Если включена кнопка 1 и включена кнопка 2, то свет горит"
(формулировка намеренно в настоящем времени - "включены", "горит", чтобы не заморачиваться на "временнУю" логику).
Высказывание кажется истинным с точки зрения интуиции (здесь и далее я буду ссылаться на "точку зрения интуиции", имея в виду предполагаемую оценку текста большинством носителей русского языка).
Обозначения
A1 = "Включена кнопка 1"
A2 = "Включена кнопка 2"
B = "Свет горит"
Если попытаться формализовать (V1) через материальную импликацию, то получится:
V2 = A1 and A2 => B
Это высказывание истинно с точки зрения булевой алгебры. Если есть сомнения, то для проверки достаточно произвести перебор всех 4 возможных состояний кнопок. Таблица истинности для материальной импликации:
X | Y | X => Y |
false | false | true |
false | true | true |
true | false | false |
true | true | true |
(из описания выключателя можно получить и другую формулу: A1 & A2 <=> B, однако формула (V2) следует из нее, и, продолжая, рассуждения далее, приходим к тому же)
Используя преобразования алгебры логики, из (V2) получается:
V3 = (A1 => B) or (A2 => B)
Выполняем обратное преобразование из материальной импликации в текст:
V4 = (A1 => B) = "Если включена кнопка 1, то свет горит".
Даже если кнопка 1 включена, неизвестно состояние кнопки 2. Если она выключена, то свет не горит. Поэтому высказывание (V4) ложно с точки зрения интуиции.
V5 = (A2 => B) = "Если включена кнопка 2, то свет горит".
Даже если кнопка 2 включена, неизвестно состояние кнопки 1. Если она выключена, то свет не горит. Поэтому высказывание (V5) ложно с точки зрения интуиции.
V3 = V4 or V5
Поскольку (V4) и (V5) ложны с точки зрения интуиции, то высказывание (V3) тоже ложно.
Однако с точки зрения формальной логики V3 имеет ту же истинность, что и V2, то есть, истинно.
Противоречие.
Источник противоречия - попытка формализовать конструкции русского языка "если ... то ..." через материальную импликацию. С английским те же проблемы.
no subject
"Поскольку (V4) и (V5) ложны с точки зрения интуиции, то высказывание (V3) тоже ложно."
Мне кажется, основная логическая ошибка заключается в том, какой смысл человек вкладывает в слово "истинность" или "ложность".
1. Интуитивно - человек будет брать исходное описание лампочки ("Когда ни одна кнопка не включена, света нет, когда включена только одна, света тоже нет, когда включены обе, свет есть.") и проверять его на эквивалентность со всеми этими утверждениями (V1, V2, V3, V4, V5), и говорить "утверждение ложно", если оно не эквивалентно. У многих людей эта проверка на эквивалентность страдает по отношению к V1, т.к. они подрадумевают, будто бы добавлено: ", а в остальных случаях лампочка не горит". Внимательные и осторожные люди, отучившиеся на физмате или на юрфаке, никогда не будут мысленно добавлять того, что написано или сказано не было, поэтому подобной проблемы у них не будет.
2. Если под ложностью или истинностью логической формулы понимать эквивалентность её с каким-то шаблоном, то из "ложности" двух отдельных утверждений совсем не следует "ложность" их дизъюнкции. (В частности, нельзя сделать вывод, что если V4 ложно и V5 ложно, то V3 будет тоже ложно).
no subject